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Abstract— Microfluidic cooling has been demonstrated as an
effective means of cooling microelectronic circuits with a very
low convective thermal resistance and potential for integration
in close proximity to the area of heat generation. However,
microfluidic cooling experiments to date have been limited to
silicon with resistive heaters representing the heat generating
circuitry. In this paper, a micropin-fin heat sink is etched into
the back side of an Altera Stratix V field-programmable gate
array (FPGA), built in a 28-nm CMOS process. Thermal and
electrical measurements are made running a benchmark pulse
compression algorithm on the FPGA. Deionized water is used as
a coolant with flow rates ranging from 0.15 to 3.0 mL/s and inlet
temperature ranging from 21 °C to 50 °C. An average junction-
to-inlet thermal resistance of 0.07 °C/W is achieved.

Index Terms—Deep reactive ion etching (DRIE), field-
programmable gate arrays (FPGAs), high-performance comput-
ing (HPC), microfluidic cooling, thermal management.

I. INTRODUCTION

S MORE functionality and higher density logic continue

to be packed into increasingly dense systems, traditional
cooling systems are being pushed to their limit, leading to the
problem of dark silicon and throttled performance. Microflu-
idic cooling, first demonstrated by Tuckerman and Pease [1],
has the potential to solve this cooling challenge for high-power
and high-performance integrated circuits. Microfluidic cooling
has the potential for very low junction-to-fluid thermal resis-
tance in a very small form factor. Low thermal resistance opens
the possibility of cooling very high heat flux integrated circuits
with a moderate inlet temperature, or moderate heat fluxes
with an elevated inlet temperature. Cooling with elevated inlet
temperatures can reduce or eliminate the need for chilling of
the coolant below maximum outside ambient temperatures and
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Fig. 1. (a) Traditional microelectronic system. (b) Microelectronic system
with monolithically integrated MFHS.

open the possibility of waste heat reuse, increasing data center
energy efficiency [2].

The most common method of cooling microelectronics has
long been an air-cooled heat sink (ACHS) mounted on top of
the packaged integrated circuit, as shown in Fig. 1(a). Efficacy
is limited with this solution and can be improved in several
ways through the use of microfluidic cooling. First, due to
the small heat sink dimensions and properties of the liquid
coolants, much lower convective thermal resistances can be
achieved with microfluidic cooling when compared with direct
air cooling. In addition, in the traditional configuration shown
in Fig. 1(a), there is a large conductive thermal resistance due
to the large distance and, more importantly, several material
interfaces through which heat must conduct in order to reach
the heat sink. In order to improve thermal resistance at these
interfaces, two levels of thermal interface material (TIM) are
used, but these interfaces still remain a major bottleneck in
total junction-to-ambient thermal resistance. By etching the
heat sink directly into the silicon die, conductive thermal
resistance between the heat source and heat sink is minimized.

The very low profile achievable with microfluidic heat
sinks (MFHSs) also makes them compatible with many dense
2.5-D and 3-D systems, as shown in Fig. 2. The examples
shown in Fig. 2 use a silicon interposer for signal and fluid
routing, but a traditional organic package could also be used.

Integrating the MFHS in an interposer, as shown in Fig. 2(a),
can offer thermal resistances superior to typical package-level

2156-3950 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1618

Die 1 Die 2

= = T T T T
P —— e s ——

= = E_E = £ = = & = =
e ——— e S ——

I JOO0C Wy JO000C

g =5 =5 = B = = =
—

Fig. 2. Microfluidic cooling integrated in the (a) interposer and
(b) back side of the die.

ACHSs, without modifying the logic dice [3]. In order to
bring the heat sink as (thermally) close to the area of heat
generation as possible, the MFHS can be etched into the back
side of the active silicon dice, as shown in Fig. 2(b). These
microfluidic-cooled dice can then be stacked to form a 3-D
stack. Signaling and power delivery are achieved with through
silicon vias (TSVs) passing through the MFHSs. Although
microfluidic cooling limits how far silicon dice can be thinned,
high-aspect-ratio TSVs can be fabricated in micropin-fins to
limit TSV capacitance [4]. Unlike traditional cooling methods
implemented on the top of the active silicon, MFHSs can be
integrated into multiple tiers in a 3-D stack, allowing cooling
to scale with the number of high-power tiers [5], [6]. This
could potentially enable the stacking of multiple high-power
tiers that could not be cooled with a single heat sink.

Since Tuckerman and Pease [1] achieved a thermal resis-
tance of 0.09 °C cm?/W using microchannels etched into
silicon, a great deal of effort has focused on achieving
improved thermal resistance and characterizing microchan-
nel or micropin-fin heat sinks with correlations to predict
performance [7]-[9]. However, research to date has focused
on passive silicon dice with resistive heaters representing the
heat-producing circuitry. In this paper, we present a functional
microfluidic-cooled CMOS circuit.

An Altera Stratix V field-programmable gate array (FPGA),
built in a 28-nm process, was postprocessed to integrate a
micropin-fin heat sink directly into the back of the flip-chip
bonded silicon die, a few hundred micrometers from the active
circuitry. This microfluidic-cooled FPGA was then tested with
deionized water as a coolant at several flow rates and inlet
temperatures. All testing was performed with Altera Stratix
V DSP development boards. A comparison was made with a
stock board with the default ACHS. Testing was performed
at flow rates ranging from 0.15 to 3.0 mL/s and with inlet
temperatures ranging from 21 °C to 50 °C.

II. FABRICATION

The Stratix V FPGA consists of a silicon die that is flip-
chip bonded onto an organic substrate. The back side of the

IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 7, NO. 10, OCTOBER 2017

0) Start with a packaged FPGA.

FPGA Die
--------J

- Heat
Spreader

Package Substrate

1) Remove the heat spreader and TIM.

2) Mount to handle wafer and spin coat photoresist.

Kapton Tape

Photoresist e =R==R =0
l Package Substrate

Handle Wafer

Cool
Grease

3) Etch Micropin-fins and remove handle wafer.

Package Substrate

4) Attach cap with epoxy.

Cap
e

E=E=-E-E-E-E-E-=
Package Substrate

5) Solder to PCB and attach Nanoports.

Fig. 3. Fabrication process for etching micropin-fins into the back side of a
packaged FPGA die.

300pum

@)} 100pm
@

Fig. 4. Image of the etched back side of the silicon FPGA die along with
the micropin-fin dimensions.

350pm
»

gl

die was used to etch a micropin-fin heat sink in the same bulk
silicon as the active circuitry. The Bosch process was used in
order to etch silicon with vertical micropin-fin sidewalls. This
batch process could be completed at the wafer level, but in
this case was applied to a single chip at the die level. This
fabrication flow was used for this proof of concept due to the
relative ease of acquiring packaged parts, but may be different
when optimized for scalability and manufacturing throughput.

The process used to add microfluidic cooling to a packaged
Stratix V FPGA is shown in Fig. 3. First, the metal lid was
removed along with TIM 1 on the back side of the die.
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Fig. 5. SEM image of micropin-fins etched using the same process in a
silicon wafer.

The flip-chip bonded die, along with the package substrate,
was then attached to a carrier wafer with cool grease and
Kapton tape to protect the package substrate and sides of the
die. Photoresist was then spin-coated on the exposed back side
of the silicon die, and the Bosch process was used to etch
micropin-fins to a depth of approximately 240 xm. Inlet and
outlet plena were formed in the same etching step by etching
regions on either side of the micropin-fin array without any
micropin-fins. A photograph of the etched die along with the
micropin-fin dimensions can be seen in Fig. 4.

An SEM image of identical micropin-fins fabricated with
the same process in a silicon wafer can be seen in Fig. 5.
In general, aspect ratio and surrounding features are known
to affect the profile and depth of etched cavities [10], [11].
Tapering of the micropin-fin sidewalls is visible on the
micropin-fins closest to the inlet and outlet regions, but
is minor in the rest of the array. Significant tapering,
where the micropin-fin base is narrower than the top, could
reduce fin efficiency and thermal performance by limiting the
cross-sectional area through which heat can conduct up the
micropin-fins.

A separate silicon lid was fabricated with an inlet and an
outlet port. The lid was first tacked on to the top of the
etched FPGA with high-temperature epoxy in order to provide
a smooth surface for resoldering to the development board.
After soldering, the lid was permanently secured with epoxy
and nanoports were attached to deliver coolant. A photograph
of the resoldered FPGA with nanoports can be seen in Fig. 6.

III. TESTING

The FPGA was loaded with a custom pulse compression
algorithm designed to mimic common DSP-style use cases
of FPGAs and also to utilize a large amount of the FPGA
resources. The algorithm consisted of nine soft computing
cores that could be toggled ON and OFF during run time. The
FPGA was tested in an open-loop system, shown in Fig. 7,
with deionized water as a coolant. Testing was conducted with
the Altera Stratix V DSP development board. The voltage
regulator module (VRM) on the board was run at a current
higher than its datasheet rating, so air was blown over it in
order to prevent overheating.
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Fig. 6. Processed FPGA soldered to development board with silicon cap and
nanoports for fluid delivery.
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Fig. 7. Diagram of the open-loop system used to test the FPGA.

Flow rate was measured with a rotameter, which was
calibrated by repeatedly filling a known volume of deionized
water at the experiment temperature. Variation between these
repeated measurements was found to be less than 0.03 mL/s
for the flow rates used in this paper. The pressure gauge used
to measure pressure drop across the heat sink was calibrated
using an Omega DPI610 calibrator to within 0.1 kPa. K-type
thermocouples were used to make fluid temperature measure-
ments at the inlet and outlet of the micropin-fin heat sink.
The relative uncertainty between temperature measurements
was found to be 0.1 °C in the temperature ranges used.

Die temperature measurements were taken using the Altera
Power Monitor tool, which retrieves measurements from an
on-die temperature diode with a resolution of 1 °C. At 20 °C,
the temperature sensor on the FPGA die was found to have
an offset from the thermocouples that was smaller than this
resolution.

The FPGA was first tested with a flow rate of 2.4 mL/s,
running zero to nine cores in order to vary the FPGA power.
The inlet water temperature was 20.5 °C and the ambient air
temperature was 19.3 °C. Temperature measurements can be
seen in Table I. A stock Stratix V DSP development board
was also tested for comparison, using the stock ACHS with
which it was bundled.

The pulse compression algorithm uses 80% of the logic,
93% of memory blocks, and 98% of the DSP blocks on the
FPGA. In addition to many subtraction, addition, multiplexing,
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TABLE I
FPGA THERMAL AND POWER MEASUREMENTS WITH MFHS AND ACHS

Cores MFHS FPGA ACHS FPGA MFHS FPGA ACHS FPGA
; Power (W) Power (W) Temp (°C) Temp (°C)
0 13.2 13.7 21-22 43
1 154 16.0 21-23 46
2 17.6 18.3 22-23 49
3 19.8 20.5 22-23 51
4 21.9 22.8 22-23 53
5 24.0 25.1 22-23 56
6 26.2 27.5 22-23 59
7 28.3 29.8 22-24 61!
8 30.4 — 22-24 —
9 32.4 — 22-24 —

"Temperature warning on board illuminated.

look-up-table, and memory operations, 346 18-bit multipli-
cations are done every clock cycle. Counting only these
multiplications, 934 GOPS are performed when operating all
nine cores at 300 MHz.

In order to capture the thermal gradient produced by heating
of the fluid, measurements were taken with fluid flowing in
both directions, as the temperature diode is located at the edge
of the chip. Therefore, the temperatures of the microfluidic
cooled FPGA are all reported as a range of two values
representing flow in both directions.

A maximum die temperature of 60 °C was set to match the
default on-board temperature warning indicator of the Stratix
V DSP development kit. Although better thermal results could
undoubtedly be achieved with a larger more powerful ACHS,
it should be noted that the stock ACHS ran six comput-
ing cores before reaching this maximum temperature, while
the microfluidic cooled FPGA ran all nine cores (a 1.5x
improvement in throughput) while maintaining a die temper-
ature below 24 °C (with additional power as per Table I).
Although the air-cooled solution results in a higher junction
temperature, it meets market requirements for Stratix V target
applications.

The FPGA heat flux is lower than many high-power
processors, and the low-profile ACHS with which it came
is significantly less effective than the best available ACHSs.
Since the temperature has a linear relationship with thermal
resistance and power (T} = Tiq+ Ry, P), the temperature can be
predicted for higher power and higher performance air cooling,
assuming a constant thermal resistance. This is demonstrated
in Fig. 8, where the average temperatures and powers from
Table I are plotted. Lines are fit to the temperature versus
power data points of the liquid-cooled FPGA at 2.4 mL/s
and the stock air-cooled FPGA. An additional line shows
the projected temperature with a powerful hypothetical ACHS
with a junction-to-ambient thermal resistance of 0.25 °C/W.

As can be seen, at an FPGA power of 160 W,
the microfluidic-cooled FPGA in this paper would have a die
temperature of 31.5 °C, while the die cooled with the hypo-
thetical high-performance ACHS would have a temperature
of 61.3 °C. At 300 W, these temperatures would be 40.6 °C
and 96.3 °C, respectively.
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representing the measurements with the temperature diode near the inlet and
near the outlet.

A. Variable Flow Rate Testing

As flow rate through a micropin-fin heat sink increases,
the convective thermal resistance decreases. This relationship
between Nusselt number, which is proportional to heat transfer
coefficient, and Reynolds number, which is proportional to
flow rate, has been measured for a variety of micropin-fin
geometries [7]-[9], [12].

The microfluidic-cooled FPGA was tested with several
different flow rates, running the same pulse compression
algorithm with all nine cores and an inlet temperature between
20.3 °C and 20.9 °C. The results can be seen in Fig. 9.
As flow rate increases, the FPGA temperature decreases due to
decreasing heating of the fluid as well as decreasing convective
thermal resistance. At a maximum flow rate of 3.0 mL/s,
a minimum average thermal resistance of 0.07 °C/W was
achieved.

As flow rate increases, the temperature gradient from inlet
to outlet due to heating of the fluid also decreases. For
a given power, the temperature gradient across the chip is
approximately equal to the temperature rise of the fluid, which
is related to flow rate as AT o 1/m, where AT is the
temperature rise of the fluid and m is the mass flow rate.
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The measured outlet water temperature and the predicted
outlet water temperature are plotted in Fig. 10. The difference
in the measured and calculated outlet water temperatures is
due to heat loss through alternate heat paths to ambient air,
such as the board and tubes.

In order to quantify heat loss to the surrounding ambient
air, heat loss was quantified as

Oloss = Oin — ”i’lcp (Tout - Tm) (D

where Qi is the measured power of the FPGA chip, m is the
water mass flow rate, C,, is the specific heat of water, and Toy
and Ti, are the measured outlet and inlet water temperatures,
respectively. C), is a relatively weak function of temperature
and was taken to be 4.18 J/(°C g). The density of the water
was taken to be 1 g/mL for the purposes of converting
measured volumetric flow rate to mass flow rate. The heat
loss is plotted versus average die temperature in Fig. 11. Data
points were used from this variable flow rate experiment as
well as the elevated inlet temperature experiment presented
in Section III-B.

Heat produced on the FPGA die has many thermal paths:
through the MFHS and into the liquid, or through the package,
board, etc., to the surrounding ambient air. When the MFHS
is operated with a high flow rate and the coolant is near the
temperature of ambient air, as is the case in the left side of
Fig. 11, the majority of the die heat is captured in the fluid.
If the efficacy of the heat sink is limited through a restricted
flow rate, or an elevated inlet temperature, the die temperature
rises relative to the surrounding ambient air and more heat
is lost through these alternate heat paths to the ambient air.
A higher ambient temperature, reduced airflow around the
board, and insulation would all increase the fraction of heat
captured by the coolant (and increase die temperature).

After fitting a line to the points in Fig. 11, the slope can be
used to calculate the thermal resistance from the FPGA die to
the ambient air through the board, tubes, etc. It was calculated
to be 1.8 °C/W for this test setup.

Pressure drop was also measured as a function of flow rate
while running all nine computing cores, which can be seen
in Fig. 12. These pressure measurements were made outside
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of the chip and therefore include pressure drop across the inlet
and outlet ports. A maximum pressure drop of 100 kPa was
set as a conservative limit in order to prevent fluid leakage.
A much higher pressure drop could be sustained with
improved cap bonding [13].

B. Elevated Inlet Temperature Testing

The FPGA was also tested with an elevated inlet tempera-
ture, varying from 21 °C to 50 °C at a flow rate of 3.1 mL/s.
These temperatures can be seen in Fig. 13. As expected,
the FPGA die temperature tracks the water inlet temperature
very closely, with an average junction temperature rise above
inlet of 2.1 °C and 0.8 °C at average inlet temperatures of
20.9 °C and 50.1 °C, respectively. Temperature rise above
inlet (and hence apparent junction-to-inlet thermal resistance)
decreases with increasing temperature due to increased heat
loss to the surrounding ambient air, which was 19.7 °C.

Pressure drop is also plotted as a function of inlet temper-
ature in Fig. 14. As water temperature increases, its viscosity
decreases, leading to the downward trend in pressure drop
versus water temperature shown in Fig. 14.

C. Clock Speed

In addition to increasing performance through increased sili-
con utilization, improved cooling can also benefit performance
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in terms of clock speed. Both the transistors and intercon-
nects experience enhanced performance with decreased tem-
perature in planar bulk CMOS. Transistor threshold voltage
and mobility tend to decrease as temperature increases [14].
Although decreased threshold voltage partially counteracts
decreased mobility, a net decrease of drive current is observed
by Lin et al. [14] in simulations of a 45-nm technology.
Lin ef al. [14] observed a 9% increase in delay time between
simulations of a nine-stage inverter chain at 25 °C and 125 °C.
The dependence of total critical path delay can, however, vary
widely depending on chip design and process technology.

In order to test the dependence of maximum clock fre-
quency on die temperature with the microfluidic-cooled FPGA,
temperature was varied by varying flow rate with an inlet
temperature between 24.3 °C and 24.7 °C. Due to current
limitations from the on-board VRM, seven of the nine cores
were run. The outputs from all cores were monitored through
the Altera Signaltap tool in order to detect glitches that
occurred in the output waveforms. The maximum clock speeds
at which all seven cores operated with no glitches can be
seen in Fig. 15 as a function of the die temperature measured
on the side of the chip closest to the outlet. Decreasing the
maximum die temperature from to 66 °C to 28 °C yielded
an improvement of 21 MHz, a 6% improvement in clock
speed (with an accompanying increase in power).
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D. Die Power

Chip power consists of dynamic power, which has little
dependence on temperature, and static/leakage power, which
comes from several components, such as subthreshold leakage,
gate leakage, and reverse bias junction current. Subthreshold
leakage current tends to be the most significant temperature
dependent component of the power [15], [16] and is given
by [17]

w
las = pto Cox(m — DoV /mT s (1 — e=VoloT) - (2)

where po is the zero bias mobility, Cox is the gate oxide
capacitance, W/L is the channel width to length ratio, m is
the subthreshold swing coefficient, Vi, is the threshold voltage,
and o7 is the thermal voltage, given by o7 = kT /q.

The total FPGA power versus average die temperature is
plotted in Fig. 16. Die temperature was varied by varying
inlet temperature at a constant flow rate of 3.1 mL/s since this
provided nearly uniform die temperatures (Fig. 13). Due to
the temperature-dependent leakage power, the measured total
FPGA power increases by 2.6%, 4.8%, and 7.8% at 41.5 °C,
50.5 °C, and 61 °C relative to power dissipation at 23 °C.
A trend curve using a first-order approximation of (2) is also
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shown in Fig. 16. From an efficiency standpoint, the measured
increase in FPGA power at elevated temperatures provides
another strong motivation for effective cooling.

IV. CONCLUSION

In this paper, a micropin-fin heat sink was etched into the
back side of an Altera Stratix V FGPA. The FPGA was tested
with a pulse compression algorithm to demonstrate function-
ality and perform thermal benchmarks. Die temperature and
power were measured as a function of flow rate and inlet
temperature. An average junction-to-inlet thermal resistance
of 0.07 °C/W was achieved at a flow rate of 3.0 mL/s and
pressure drop of 97 kPa. This thermal resistance is sufficiently
low to cool future generations of FPGAs and other high heat
flux processors. The FPGA was also cooled with inlet water
temperatures up to 50 °C, enabling high efficiency through
heat exchange directly to ambient air, or waste heat reuse.

Future work may focus on both enhancement of the MFHS
and the benchmarking algorithm loaded on to the FPGA. Pres-
sure drop and thermal resistance could be improved through
optimization of the micropin-fin heat sink and ports. The
FPGA offers an opportunity to benchmark the performance
gained through increased clock speed and chip utilization with
many algorithms and architectures.
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